MATH 141: Some Practice Final Problems
Here are problems that cover the last two weeks of our class.
Remember the final is cumulative; you should look at Practice Midterm 1+2 and Midterm $1+2$ as well.

1. A plane flying horizontally at an altitude of 1 mi and a speed of 500 mph passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when it is 2 miles away from the station.
(1)

(2) Gina:

$$
z=2 \mathrm{mi}, \frac{d x}{d t}=500 \mathrm{mi} / \mathrm{h}
$$

Need:

$$
\frac{d z}{d t}
$$

(3) $x^{2}+1^{2}=z^{2}$

Ppthagonen The
(4)

$$
\begin{aligned}
& \frac{d}{d t}\left[x^{2}\right]+\frac{d}{d t}\left[1^{2}\right]=\frac{d}{d t}\left[z^{2}\right] \\
& 2 \times \frac{d x}{d t}+0=2 z \frac{d z}{d t}
\end{aligned}
$$

$$
\frac{d z}{d t}=\frac{2 x}{2 z} \frac{d x}{d t}=\frac{x}{z} \cdot \frac{d x}{d t}
$$

(5) Now ploy in z.

$$
\begin{aligned}
1^{2}+x^{2} & =2^{2} \\
x^{2} & =4-1 \\
x^{2} & =3 \\
\sqrt{x^{2}} & = \pm \sqrt{3}
\end{aligned}
$$

(6)

$$
\begin{aligned}
\frac{d z}{d t} & =\frac{x}{z} \cdot \frac{d x}{d t} \\
& =\frac{\sqrt{3} \mathrm{mi}}{2 \text { mri }} \cdot 500 \frac{\mathrm{mit}}{\mathrm{~h}} \\
& =250 \mathrm{mc} / \mathrm{h}
\end{aligned}
$$

2. Short answer questions:
(a) What are the two methods for finding local minimums and maximums called? State the weaknesses of one of the methods.
(1) First dreintive test.
(2) Second diviative test; connect determine local externs in the cause whee $f^{\prime}(c)$ DNE (the pointy corner extwana)
(b) What is the method for finding absolute minimums and maximums called?

Closed intinal method.
(c) What is the strength of Part 2 of the Fundamental Theorem of Calculus? Whin culturing integers, internal of during An infinite limit of a sum, you only need to take the antiderivative of the function y ow are integrating. (d) Find three particular antiderivatives of the function $f(x)=\sin (x)$.

$$
F^{\prime}(x)=-(-\sin (x))+0=\sin (x)
$$

because $\quad F_{2}^{\prime}(x)=-(-\sin (x))+0=\sin (x)$

$$
F_{\jmath}^{\prime}(x)=-(-\sin (x))+0=\sin (x)
$$

3. Suppose $f(x)=\frac{x}{x^{2}+1}$.
(a) Find all intervals on which $f(x)$ is increasing and decreasing.
(1) crit \#'s

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\left(x^{2}+1\right) \cdot \frac{d}{d x}[x]-x \frac{l}{d x}\left[x^{2}+1\right]}{\left(x^{2}+1\right)^{2}} \\
& =\frac{x^{2}+1-x-2 x}{\left(x^{2}+1\right)^{2}} \\
& =\frac{-x^{2}+1}{\left(x^{2}+1\right)^{2}} \\
& \text { Quetient Rele } \\
& \text { sulue } \\
& \text { (a) } \\
& \delta^{\prime}(x)=0 \\
& \frac{-x^{2}+1}{\left(x^{2}+1\right)^{2}}=0 \quad \square \pm \sqrt{1}=x \\
& -x^{2}+1=0 \\
& 1=x^{2} \\
& x= \pm 1
\end{aligned}
$$

(b) $f(x)$ DNE whin $\left(x^{2}+1\right)^{2}=0$
(b) Find all local minimums and maximums. but $x^{2}+1>0$ so nut applicable.
(2) Sign diagrum of f^{\prime}

fuctor

$$
\begin{aligned}
& f(x)=\frac{-x^{2}+1}{\left(x^{2}+1\right)^{2}}=\frac{-\left(x^{2}-1\right)}{\left(x^{2}+1\right)^{2}}=\frac{-(x-1)(x+1)}{\left(x^{2}+1\right)^{2}} \\
& f^{\prime}(-2)=\frac{-(-2-1)(-2+1)}{\left((-2)^{2}+1\right)^{2}}=\frac{-\cdots}{+}=- \\
& f^{\prime}(0)=\frac{-(0-1)(0+1)}{\left(0^{2}+1\right)^{2}}=\frac{-\cdots+}{t}=+ \\
& f^{\prime}(2)=\frac{-(2-1)(2+1)}{\left(2^{2}+1\right)^{2}}=\frac{-++t}{+}=-\quad \begin{array}{l}
(-2,2) \\
\text { Local minimum of } f(-1)=\frac{-1}{(-1)^{2}+1}=-\frac{1}{2} \\
\text { Lucal muximmen of } f(1)=\frac{1}{1^{2}+1}=\frac{1}{2}
\end{array} \\
& \text { Incresing on } \\
& (-\infty, 2) \cup(2, \infty) \\
& \text { Decruating on } \\
& (-2,2) \\
& \text { Lucul muximim of } f(1)=\frac{1}{1^{2}+1}=\frac{1}{2}
\end{aligned}
$$

4. Evaluate the following expressions. If applicable, you are allowed to use Fundamental Theorem of Calculus.
(a) $\sum_{i=1}^{5} \frac{f(i)}{i}$ given that $f(x)=x^{2}$

$$
\begin{aligned}
\sum_{i=1}^{5} \frac{f(i)}{i} & =\frac{f(1)}{1}+\frac{f(2)}{2}+\frac{f(3)}{3}+\frac{f(4)}{4}+\frac{f(5)}{5} \\
& =1+\frac{2^{2}}{2}+\frac{3^{2}}{3}+\frac{4^{2}}{4}+\frac{5^{2}}{5} \\
& =1+2+3+4+5=15
\end{aligned}
$$

(b) $\int_{1}^{5} x d x=\left.\frac{1}{2} x^{2}\right|_{1} ^{5}=\frac{1}{2} \cdot 5^{2}-\frac{1}{2} \cdot 1^{2}=\frac{25}{2}-\frac{1}{2}=\frac{24}{2}$

$$
=12
$$

(c) $\lim _{x \rightarrow \infty} \frac{x+1}{\sqrt{x^{4}-2}}=\lim _{x \rightarrow \infty} \frac{\frac{x+1}{x^{2}}}{\frac{\sqrt{x^{4}-2}}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}+\frac{1}{x^{2}}}{\sqrt{\frac{x^{4}-2}{x^{4}}}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}+\frac{1}{x^{2}}}{\sqrt{1-\frac{2}{x^{4}}}}$
largest pawn is x^{2}

$$
=\frac{\lim _{x \rightarrow \infty} \frac{1}{x}+\lim _{x \rightarrow \infty} \frac{1}{x^{2}}}{\sqrt{\lim _{x \rightarrow \infty} 1-2 \cdot \lim _{x \rightarrow \infty} \frac{1}{x^{4}}}}=\frac{0+0}{\sqrt{1-2 \cdot 0}}=0
$$

(d) $\lim _{x \rightarrow \infty}\left(x^{5}-x^{3}\right)=\lim _{x \rightarrow \infty} x^{2}\left(x^{3}-1\right)=\infty . \infty=\infty$
(h) $\int_{1}^{4} \frac{1}{\sqrt{x}} d x=\int_{1}^{4} x^{-\frac{1}{2}} d x=\left.\frac{1}{\frac{1}{2}} x^{\frac{1}{2}}\right|_{1} ^{4}$

$$
=\left.2 \sqrt{x}\right|_{1} ^{4}
$$

$$
=2 \cdot \sqrt{4}-2 \cdot \sqrt{1}
$$

$$
=2 \cdot 2-2=2
$$

$$
\begin{aligned}
& \text { (e) } \int_{-1}^{1}\left(3 x^{2}+4 x+4\right) d x=3 \int_{-1}^{1} x^{2} d x+4 \int_{-1}^{1} x d x+\int_{-1}^{1} 4 d x \\
& =\left.3 \cdot \frac{1}{3^{2}} x^{3}\right|_{-1} ^{1}+\left.4 \cdot \frac{1}{2} x^{2}\right|_{-1} ^{1}+\left.4 x\right|_{-1} ^{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (f) } \int_{\pi / 2}^{\pi} \cos (x) d x=1+1+2(1-1)+4(1+1)=2+8=10 \\
& \int_{\pi / 2}^{\pi} \cos (x) d x=\left.\sin (x)\right|_{\pi / 2} ^{\pi}=\sin (\pi)-\sin \left(\frac{\pi}{2}\right)=0-1=-1 \\
& \text { (g) } \lim _{x \rightarrow \infty} \frac{x^{2}}{x^{3}+1}=\lim _{x \rightarrow \infty} \frac{\frac{x^{2}}{x^{3}}}{\frac{x^{3}+1}{x^{3}}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1+\frac{1}{x^{3}}}=\frac{\lim _{x \rightarrow \infty} \frac{1}{x}}{\lim _{x \rightarrow \infty} 1+\lim _{x \rightarrow \infty} \frac{1}{x^{3}}} \\
& =\frac{0}{1+0} \\
& =0
\end{aligned}
$$

5. Suppose $f(x)=x^{2}$. Approximate the area underneath the curve on the interval $[1,2]$ using four rectangles and right endpoints.

Only set up the sum; do not compute it.

$$
n=4
$$

$$
\Delta x=\frac{b-a}{n}=\frac{2-1}{4}=\frac{1}{4}
$$

$$
\begin{aligned}
A & =f\left(x_{1}\right) \cdot \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{1}\right) \Delta x+f\left(x_{4}\right) \Delta x \\
& =f\left(\frac{5}{4}\right) \cdot \frac{1}{4}+f\left(\frac{6}{4}\right) \cdot \frac{1}{4}+f\left(\frac{17}{4}\right) \cdot \frac{1}{4}+f(2) \cdot \frac{1}{4} \\
& \left.=\frac{1}{4}\left(\frac{5}{4}\right)^{2}+\left(\frac{6}{4}\right)^{2}+\left(\frac{7}{4}\right)^{2}+2^{2}\right)
\end{aligned}
$$

6. Consider the functions

$$
g(x)=\int_{0}^{x} t^{2} d t \quad h(x)=\int_{0}^{x} \sin \left(t^{3}\right) d t
$$

(a) What is the geometric meaning of the number $g(5)$?

The aria between the cure and the x - $a x i$ s of the function $f(x)=x^{2}$ on the internal $[0,5]$
(b) What is the geometric meaning of the number $h(3)$?

The aria between the curve and the x-axis of the function $f(x)=\sin \left(x^{3}\right)$ on the intwual $[0,5]$
(c) Find the derivative with respect to x of $g(x)$.

$$
\frac{d}{d x} g(x)=\frac{d}{d x} \int_{0}^{x} t^{2} d t=x^{2}
$$

by FTC 1
(d) Evaluate the following expression:

$$
\begin{aligned}
\begin{array}{c}
d \\
\frac{d}{d x}[g(x)+h(x)]
\end{array} & =\frac{d}{d x}[g(x)]+\frac{d}{d x}[g(x)+h(x)] \\
& =\frac{d}{d x} \int_{0}^{x} t^{2} d t+\frac{d}{d x} \int_{0}^{x} \sin \left(t^{3}\right) d t \\
& =x^{2}+\sin \left(x^{3}\right)
\end{aligned}
$$

7. Determine the intervals of concavity of

$$
f(x)=2 x^{3}-9 x^{2}+12 x-3
$$

(1) Find inflection points

$$
\begin{aligned}
& f^{\prime}(x)=6 x^{2}-18 x+12 \\
& f^{\prime \prime}(x)=12 x-18=6(2 x-3)
\end{aligned}
$$

(a) solve $f^{\prime \prime}(x)=0$
(b) find when $f^{\prime \prime}(x)$ DIE

$$
\begin{gathered}
6(2 x-3)=0 \\
2 x-3=0 \\
x-\frac{3}{2}
\end{gathered}
$$

(2) Sign liagoum of $f^{\prime \prime}$

not applicable, $f^{\prime \prime}(x)$ has domain \mathbb{R}.

(cacus upon $\left(\frac{3}{2}, \infty\right)$
Concur down on $\left(-\infty, \frac{3}{2}\right)$

$$
\begin{aligned}
& f^{\prime \prime}(0)=6 \cdot(2 \cdot 0-3)=- \\
& f^{\prime \prime}(2)=6 \cdot(2 \cdot 2-3)=+
\end{aligned}
$$

